Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
2.
J Proteome Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565891

RESUMO

Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.

3.
Sci Data ; 11(1): 323, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548755

RESUMO

Balantidium ctenopharyngodoni is identified as the sole ciliate species that exclusively resides within the hindgut of grass carp with high prevalence and intensity. In this study, the successful cultivation of B. ctenopharyngodoni enabled us to collect enough cells for genome sequencing. Consequently, we acquired a high-quality genome assembly spanning 68.66 Mb, encompassing a total of 22,334 nanochromosomes. Furthermore, we predicted 29,348 protein-coding genes, and 95.5% of them was supported by the RNA-seq data. The trend of GC content in the subtelomeric regions of single-gene chromosomes was similar to other ciliates containing nanochromosomes. A large number of genes encoding carbohydrate-binding modules with affinities for starch and peptidoglycans was identified. The identification of mitochondrion-related organelles (MROs) within genome indicates its well-suited adaptation to the anaerobic conditions in the hindgut environment. In summary, our results will offer resources for understanding the genetic basis and molecular adaptations of balantidia to hindgut of herbivorous fish.


Assuntos
Balantidium , Genoma de Protozoário , Animais , Balantidium/genética , Sequência de Bases , Cromossomos , Filogenia , Carpas
4.
World J Microbiol Biotechnol ; 40(4): 132, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470533

RESUMO

Lactococcus garvieae (L. garvieae) is a pathogenic bacterium that is Gram-positive and catalase-negative (GPCN), and it is capable of growing in a wide range of environmental conditions. This bacterium is associated with significant mortality and losses in fisheries, and there are concerns regarding its potential as a zoonotic pathogen, given its presence in cattle and dairy products. While we have identified and characterized virulent strains of L. garvieae through phenotyping and molecular typing studies, their impact on mammary tissue remains unknown. This study aims to investigate the pathogenicity of strong and weak virulent strains of L. garvieae using in vivo mouse models. We aim to establish MAC-T cell model to examine potential injury caused by the strong virulent strain LG41 through the TLR2/NLRP3/NF-kB pathway. Furthermore, we assess the involvement of NLRP3 inflammasome-mediated pyroptosis in dairy mastitis by silencing NLRP3. The outcomes of this study will yield crucial theoretical insights into the potential mechanisms involved in mastitis in cows caused by the L. garvieae-induced inflammatory response in MAC-T cells.


Assuntos
Inflamassomos , Mastite , Humanos , Feminino , Animais , Bovinos , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Linfócitos T/metabolismo , Lactococcus/metabolismo , Mastite/microbiologia , Mastite/veterinária , Inflamação
5.
Ecotoxicol Environ Saf ; 275: 116258, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547732

RESUMO

Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5 h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250 µg/L As(V) in 48 h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.


Assuntos
Arsênio , Tetrahymena thermophila , Arsênio/metabolismo , Ecossistema , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Biotransformação , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(13): e2315531121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498704

RESUMO

Mating type (sex) plays a crucial role in regulating sexual reproduction in most extant eukaryotes. One of the functions of mating types is ensuring self-incompatibility to some extent, thereby promoting genetic diversity. However, heterothallic mating is not always the best mating strategy. For example, in low-density populations or specific environments, such as parasitic ones, species may need to increase the ratio of potential mating partners. Consequently, many species allow homothallic selfing (i.e., self-fertility or intraclonal mating). Throughout the extensive evolutionary history of species, changes in environmental conditions have influenced mating strategies back and forth. However, the mechanisms through which mating-type recognition regulates sexual reproduction and the dynamics of mating strategy throughout evolution remain poorly understood. In this study, we show that the Cip1 protein is responsible for coupling sexual reproduction initiation to mating-type recognition in the protozoal eukaryote Tetrahymena thermophila. Deletion of the Cip1 protein leads to the loss of the selfing-avoidance function of mating-type recognition, resulting in selfing without mating-type recognition. Further experiments revealed that Cip1 is a regulatory subunit of the Cdk19-Cyc9 complex, which controls the initiation of sexual reproduction. These results reveal a mechanism that regulates the choice between mating and selfing. This mechanism also contributes to the debate about the ancestral state of sexual reproduction.


Assuntos
Fertilidade , Reprodução , Reprodução/genética , Eucariotos/genética , Genes Fúngicos Tipo Acasalamento
7.
BMC Psychol ; 12(1): 103, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38414026

RESUMO

As an emerging business model, merchants are selling surplus food in blind boxes, which provides new opportunities for reducing waste and promoting sustainable development. Surplus food blind boxes, however, have not been extensively researched in terms of design and marketing strategies. Therefore, we are examining how to increase consumers' purchase intention regarding surplus food blind boxes as well as the relationship between purchase intention, continuous intention, and recommendation intention. In this paper, two studies are conducted. As part of study 1, We used factor analysis to explore the reasons that influence consumers to purchase. In study 2, we utilized structural equation modeling to examine the impact of purchase intention on continuous intention and recommendation intention. Results indicate that food quality, perceived sustainability, and conspicuous consumption are the most important positive factors. The most important negative factors are perceived food risk, resistance to sales techniques, taste anxiety, and inadequate marketing strategies. Based on our findings, we constructed a path relationship between purchase intention, continuous intention, and recommendation intention. The purchase intention of the surplus food blind box users directly influences the recommendation intention and the continuous intention, while the recommendation intention indirectly influences the continuous intention. This study did not demonstrate that gender had a moderating effect. Meanwhile, it provides a reference for the actual marketing management of surplus food blind box merchants.


Assuntos
Comportamento do Consumidor , Intenção , Humanos , Inquéritos e Questionários
8.
Elife ; 132024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415774

RESUMO

Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.


Assuntos
Comunicação Celular , Reprodução , Membrana Celular , Cílios , Reconhecimento Psicológico
9.
Nat Commun ; 15(1): 1438, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365793

RESUMO

The Tibetan Plateau supplies water to nearly 2 billion people in Asia, but climate change poses threats to its aquatic microbial resources. Here, we construct the Tibetan Plateau Microbial Catalog by sequencing 498 metagenomes from six water ecosystems (saline lakes, freshwater lakes, rivers, hot springs, wetlands and glaciers). Our catalog expands knowledge of regional genomic diversity by presenting 32,355 metagenome-assembled genomes that de-replicated into 10,723 representative genome-based species, of which 88% were unannotated. The catalog contains nearly 300 million non-redundant gene clusters, of which 15% novel, and 73,864 biosynthetic gene clusters, of which 50% novel, thus expanding known functional diversity. Using these data, we investigate the Tibetan Plateau aquatic microbiome's biogeography along a distance of 2,500 km and >5 km in altitude. Microbial compositional similarity and the shared gene count with the Tibetan Plateau microbiome decline along with distance and altitude difference, suggesting a dispersal pattern. The Tibetan Plateau Microbial Catalog stands as a substantial repository for high-altitude aquatic microbiome resources, providing potential for discovering novel lineages and functions, and bridging knowledge gaps in microbiome biogeography.


Assuntos
Microbiota , Humanos , Tibet , Microbiota/genética , Lagos , Rios , Água
10.
Structure ; 32(4): 440-452.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340732

RESUMO

Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.


Assuntos
Microcistinas , Peptídeo Sintases , Peptídeo Sintases/química , Conformação Molecular , Peptídeos
11.
Vaccine ; 42(6): 1292-1299, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38296705

RESUMO

BACKGROUND: The emergence and rapid spread of new mutant strains of SARS-CoV-2 necessitate the development of a new generation vaccine capable of neutralizing a broad range of variants. When the SARS-CoV-2 Omicron variant emerged, individuals in China had already received an inactivated (INA) or a type 5 adenovirus-vectored (Ad5) SARS-CoV-2 vaccine targeting the wild-type virus. We have recently developed a bivalent recombinant type 5 vaccine targeting both the wild-type strain and the Omicron variant (Ad5-nCoV/O). The objectives of this study were to assess the immunogenicity of the bivalent vaccine as a booster against both the wild type and the Omicron variant. METHODS: In the single immunization model, mice received one intramuscular immunization with monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. In the prime-boost model, mice were primed intramuscularly with an INA or Ad5-vectored vaccine targeting wild-type SARS-CoV-2, and then boosted intramuscularly or intranasally with heterologous or homologous INA or monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. The vaccine-induced antibody responses and cellular immune responses were measured using ELISA, pseudovirus-based neutralization assays, the intracellular cytokine staining (ICS) and ELISpot. RESULTS: Single-dose prime vaccination with the monovalent and bivalent vaccines elicited robust antibody responses and CD4 + and CD8 + cellular responses against the spike protein of WT and Omicron SARS-CoV-2. Both intramuscular and intranasal boost vaccination with the bivalent Ad5-nCoV/O following a prime with INA or Ad5-vectored vaccines induced strong serum neutralization antibody responses to both wild type and Omicron variants. A heterologous prime-boost vaccination elicited greater neutralization antibody responses than a homologous prime-boost vaccination when mice were boosted with Ad5-vectored vaccines following a prime with INA. Intranasal boost also resulted in significant mucosal IgA responses. CONCLUSION: The bivalent vaccine Ad5-nCoV/O exhibited robust immunogenicity, inducing broad-spectrum cross-neutralizing antibodies and cellular immune responses against both wild type and Omicron variants of SARS-CoV-2. The results demonstrated the potential of the bivalent vaccine in addressing the challenges posed by emerging SARS-CoV-2 Omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Vacinas Combinadas , Modelos Animais de Doenças , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , ELISPOT , Adenoviridae/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
12.
Nat Commun ; 15(1): 40, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167292

RESUMO

The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.


Assuntos
Glioma , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Sumoilação , Isomerismo , Fosforilação , Glioma/genética , Células-Tronco Neoplásicas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
13.
Nucleic Acids Res ; 52(D1): D747-D755, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930867

RESUMO

Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.


Assuntos
Bases de Dados Genéticas , Eucariotos , Fungos , Genoma , Animais , Códon , Eucariotos/genética , Fungos/genética , Plantas/genética
14.
Diabetes Obes Metab ; 26(1): 373-384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920887

RESUMO

AIM: To investigate the sex-specific causality of body compositions in type 2 diabetes and related glycaemic traits using Mendelian randomization (MR). MATERIALS AND METHODS: We leveraged sex-specific summary-level statistics from genome-wide association studies for three adipose deposits adjusted for body mass index and height, including abdominal subcutaneous adipose tissue, visceral adipose tissue (VATadj) and gluteofemoral adipose tissue (GFATadj), measured by MRI (20 038 women; 19 038 men), and fat mass-adjusted appendicular lean mass (ALMadj) (244 730 women; 205 513 men) in the UK Biobank. Sex-specific statistics of type 2 diabetes were from the Diabetes Genetics Replication and Meta-analysis Consortium and those for fasting glucose and insulin were from the Meta-analyses of Glucose and Insulin-related Traits Consortium. Univariable and multivariable MR (MVMR) were performed. We also performed MR analyses of anthropometric traits and genetic association analyses using individual-level data of body composition as validation. RESULTS: Univariable MR analysis showed that, in women, higher GFATadj and ALMadj exerted a causally protective effect on type 2 diabetes (GFATadj: odds ratio [OR] 0.59, 95% confidence interval [CI; 0.50, 0.69]; ALMadj: OR 0.84, 95% CI [0.77, 0.91]) and VATadj to be riskier in glycaemic traits. MVMR showed that GFATadj retained a robust effect on type 2 diabetes (OR 0.57, 95% CI [0.42, 0.77]; P = 2.6 × 10-4 ) in women, while it was nominally significant in men (OR 0.58, 95% CI [0.35, 0.96]; P = 3.3 × 10-2 ), after adjustment for ASATadj and VATadj. MR analyses of anthropometric measures and genetic association analyses of glycaemic traits confirmed the results. CONCLUSIONS: Body composition has a sex-specific effect on type 2 diabetes, and higher GFATadj has an independent protective effect on type 2 diabetes in both sexes.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Feminino , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Adiposidade/genética , Insulina/genética , Imageamento por Ressonância Magnética , Glucose , Polimorfismo de Nucleotídeo Único , Estudos Observacionais como Assunto
15.
Phys Chem Chem Phys ; 25(48): 33130-33140, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047441

RESUMO

In recent years, α-In2Se3 has attracted great attention in miniaturizing nonvolatile random memory devices because of its room temperature ferroelectricity and atomic thickness. In this work, we construct two-dimensional (2D) van der Waals (vdW) heterostructures α-In2Se3/MoS2 with different ferroelectric polarization and design a 2D graphene (Gr)/In2Se3/MoS2/Gr ferroelectric tunnel junction (FTJ) with the symmetric electrodes. Our calculations show that the band alignment of the heterostructures can be changed from type-I to type-II accompanied by the reversal of the ferroelectric polarization of In2Se3. Furthermore, the ferroelectricity persists in Gr/In2Se3/MoS2/Gr vdW FTJs, and the presence of dielectric layer MoS2 in the FTJs enables the effective modulation of the tunneling barrier by altering the ferroelectric polarization of α-In2Se3, which results in two distinct conducting states denoted as "ON" and "OFF" with a large tunneling electroresistance (TER) ratio exceeding 105%. These findings suggest the importance of ferroelectric vdW heterostructures in the design of FTJs and propose a promising route for applying the 2D ferroelectric/semiconductor heterostructures with out-of-plane polarization in high-density ferroelectric memory devices.

16.
Int. braz. j. urol ; 49(6): 716-731, Nov.-Dec. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550271

RESUMO

ABSTRACT Objectives: Accurate preoperative prediction of adverse pathology is crucial for treatment planning of renal cell carcinoma (RCC). Previous studies have emphasized the potential of prostate-specific membrane antigen positron emission tomography / computed tomography (PSMA PET/CT) in differentiating between benign and malignant localized renal tumors. However, there is a scarcity of case reports elucidating the identification of aggressive pathological features using PET/CT. Our study was designed to prospectively compare the diagnostic value of enhanced CT, 68Ga-PSMA-11 and 18F-fluorodeoxyglucose (18F-FDG) PET/CT in clear-cell renal cell carcinoma (ccRCC) with necrosis or sarcomatoid or rhabdoid differentiation. Materials and Methods: A prospective case series of patients with a newly diagnosed renal mass who underwent enhanced CT, 68Ga-PSMA-11 and 18F-FDG PET/CT within 30 days prior to nephrectomy was included. Complete preoperative and postoperative clinicopathological data were recorded. Patients who received neoadjuvant targeted therapy, declined enhanced CT or PET/CT scanning, refused surgical treatment or had non-ccRCC pathological indications were excluded. Radiological parameters were compared within subgroups of pathological characteristics. Bonferroni corrections were used to adjust for multiple testing and statistical significance was set at a p-value less than 0.017. Results: Seventy-two patients were available for the final analysis. Enhanced CT demonstrated poor performance in identifying necrosis, sarcomatoid or rhabdoid differentiation and adverse pathology (all P > 0.05). The maximum standardized uptake value (SUVmax) of 68Ga-PSMA-11 PET/CT was more effective than 18F-FDG PET/CT in identifying tumor necrosis and adverse pathology, with an area under the curve (AUC) of 0.85 (cutoff value=25.26, p<0.001; Delong test z=2.709, p=0.007) for tumor necrosis and AUC of 0.90 (cutoff value=25.26, p<0.001; Delong test z=3.433, p<0.001) for adverse pathology. However, no significant statistical difference was found between 68Ga-PSMA-11 and 18F-FDG PET/CT in predicting sarcomatoid or rhabdoid feature (AUC of 0.91 vs.0.75, Delong test z=1.998, p=0.046). Subgroup analyses based on age, sex, tumor location, maximal diameter, stage and WHO/ISUP grade demonstrated that 68Ga-PSMA-11 PET/CT SUVmax had a significant predictive value for adverse pathology. Enhanced CT value and SUVmax demonstrated strong reliability [intraclass correlation coefficient (ICC) > 0.80], indicating a robust correlation. Conclusions: 68Ga-PSMA-11 PET/CT demonstrates distinct advantages in identifying aggressive pathological features of primary ccRCC when compared to enhanced CT and 18F-FDG PET/CT. Further research and assessment are warranted to fully establish the clinical utility of 68Ga-PSMA-11 PET/CT in ccRCC.

17.
Brain Behav ; 13(12): e3293, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38032706

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a debilitating event that often results in long-term physical damage, disability, and a significant impact on a patient's quality of life. Past research has noted an age-dependent decline in regeneration post-SCI. This study seeks to identify potential biomarkers and enriched pathways in young and aged SCI mouse models. METHODS: We retrieved the microarray data of spinal cord samples from SCI mice and control mice from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the R software and the Linear Models for Microarray Data (limma) package. The Gene Set Enrichment Analysis (GSEA) determined enrichment differences among gene sets. The Weighted Gene Co-expression Network Analysis (WGCNA) pinpointed clinically significant modules and hub genes in SCI. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was employed to uncover significantly related pathways of crucial genes in SCI. RESULTS: We found 2560 DEGs in the young SCI group, comprised of 1733 upregulated RNAs and 827 downregulated RNAs. In the aged SCI group, 3048 DEGs were revealed including 1856 upregulated and 1192 downregulated genes. The GSEA revealed 12 enriched signaling pathways in the young SCI group, such as IL6/JAK/STAT3 signaling, interferon alpha response, and interferon gamma response, and 21 signaling pathways in the aged SCI group such as IL6/JAK/STAT3 signaling, E2F targets, and angiogenesis-related pathways. The WGCNA identified the turquoise module as significantly associated with the clinical traits of both young and aged SCI, and revealed 3181 hub genes. Ultimately, 1858 significant genes in SCI were found, with associated signaling pathways including epithelial-mesenchymal transition (EMT), interferon gamma response, and KARS signaling. CONCLUSION: Our study explored the RNA expression patterns and enriched signaling pathways in young and aged SCI mice. These findings may provide potential biomarkers for targeted SCI therapy.


Assuntos
Interferon gama , Traumatismos da Medula Espinal , Camundongos , Animais , Humanos , Idoso , Interferon gama/genética , Interleucina-6/genética , Qualidade de Vida , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Perfilação da Expressão Gênica/métodos , Biomarcadores , Biologia Computacional/métodos , Fatores Etários
18.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982723

RESUMO

Characterizing the properties (e.g., effective dielectric constant εeff, attenuation constant α, and characteristic impedance Z0) of terahertz (THz) superconducting transmission lines is of particular interest in designing on-chip integrated THz bandpass filters, which are a critical component for THz astronomical instruments, such as multi-color camera and broadband imaging spectrometers. Here, we propose a novel method for the characterization of three parameters (εeff, α, and Z0) of THz superconducting transmission lines. This method measures the ratio of the THz signal powers through two different-length branches of the superconducting transmission line to be measured. In addition, only one measurement is required for an all-in-one device chip, including an antenna, a half-power divider, the superconducting transmission line to be measured, and two detectors. The key point is that the superconducting transmission line to be measured is impedance-mismatched with the two integrated detectors. The method is validated through simulation and measurement for superconducting coplanar waveguide transmission lines around 400 GHz.

19.
Microorganisms ; 11(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37894156

RESUMO

Microbial communities are essential components of aquatic ecosystems and are widely employed for the detection, protection, and restoration of water ecosystems. The polyurethane foam unit (PFU) method, an effective and widely used environmental monitoring technique, has been improved with the eDNA-PFU method, offering efficiency, rapidity, and standardization advantages. This research aimed to explore the colonization process of microbial communities within PFUs using eDNA-PFU technology. To achieve this, we conducted ten-day monitoring and sequencing of microbial communities within PFUs in a stable and controlled artificial aquatic ecosystem, comparing them with water environmental samples (eDNA samples). Results showed 1065 genera in eDNA-PFU and 1059 in eDNA, with eDNA-PFU detecting 99.95% of eDNA-identified species. Additionally, the diversity indices of bacteria and eukaryotes in both methods showed similar trends over time in the colonization process; however, relative abundance differed. We further analyzed the colonization dynamics of microbes in eDNA-PFU and identified four clusters with varying colonization speeds. Notably, we found differences in colonization rates between bacteria and eukaryotes. Furthermore, the Molecular Ecological Networks (MEN) showed that the network in eDNA-PFU was more modular, forming a unique microbial community differentiated from the aquatic environment. In conclusion, this study, using eDNA-PFU, comprehensively explored microbial colonization and interrelationships in a controlled mesocosm system, providing foundational data and reference standards for its application in aquatic ecosystem monitoring and beyond.

20.
Sci Rep ; 13(1): 17932, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864065

RESUMO

Co-culture systems of rice and aquatic animals can contribute to the ecological intensification of agriculture by reducing nutrient loss and the need for N fertilizer application and by enhancing nutrient-use efficiency. However, the input of high-protein diets into paddy fields, to facilitate the growth of aquatic animals, has been found to increase N pollution and acidification of the soil. Although soil amendments have been widely used to ameliorate acidic soils, reduce N2O emissions, and improve agronomic production, the relationship between soil amendments and aquatic animal remains unclear. Therefore, this study investigated the effects of calcined dolomite (hereafter referred to as dolomite) as an acidic soil amendment and Ca-Mg supplement in rice-crab co-culture using Eriocheir sinensis crabs (Chinese mitten crabs). High-throughput sequencing was used to examine crab bacterial community composition and crab hepatopancreas biology. Although the water pH was significantly increased in the dolomite group, the number, composition, and diversity of bacteria identified in crab gut microbiome did not vary significantly between the dolomite and control groups. In the dolomite group, the probiotic agents Candidatus Hepatoplasma and Lactobacillus were highly abundant in the crab gut, and immune- and retinol metabolism-related genes were significantly upregulated in the crab hepatopancreas. Overall, dolomite application increased crab health and water pH. Dolomite is a low-cost amendment, with better stability, compared to other soil amendments, thus making it ideal for sustainable and clean rice-aquatic animal co-culture.


Assuntos
Braquiúros , Microbiota , Oryza , Animais , Técnicas de Cocultura , Perfilação da Expressão Gênica , Bactérias , Solo/química , Ácidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...